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Scan statistics are applied to combine information on multiple
contiguous genetic markers used in a genome screen for suscep-
tibility loci. This information may be, for example, allele sharing
proportions for sib pairs or logarithm of odds (lod) scores in general
small families. We focus on a dichotomous outcome variable, for
example, case and control individuals or affected-affected versus
affected-unaffected siblings, and suitable single-marker statistics.
A significant scan statistic based on the single-marker statistics
represents evidence of the presence of a susceptibility gene. For a
given length of the scan statistic, we assess its significance by
Monte Carlo permutation tests. Comparing P values for varying
lengths of scan statistics, we treat the smallest observed P value as
our statistic of interest and determine its overall significance level.
We applied this method to a genome screen with autism families.
The result was informative and surprising: A susceptibility region
was found (genome-wide significance level, P 5 0.038), which is
missed with conventional approaches.

Much progress has been made in the localization of suscep-
tibility genes. Methods implemented in programs such as

ASPEX (1), GENEHUNTER (2, 3) and ALLEGRO (4) can make use
of all marker loci on a chromosome and render any point along
the chromosome as informative as possible. On the other hand,
once that information has been obtained, it is applied in rather
traditional ways. In this paper, we embark on approaches to gene
mapping by jointly analyzing information at a number of marker
loci covering a contiguous area of the genome.

In genome screens, logarithms of likelihood ratios (so-called
lod scores) are computed for many points on the genome, where
the likelihood in the numerator refers to the presence of a
susceptibility locus at a given position, and the likelihood in the
denominator assumes absence of that locus. True peaks of such
lod score curves are known to be wider than false peaks (5).
Consequently, higher positive lod scores and a larger number of
them are expected around true rather than around false peaks.
This property of lod scores generally is not taken into account
in the search for susceptibility loci, but ad hoc approaches have
suggested increased power when information from a small
number of neighboring markers is combined (6, 7). In this paper,
we propose a way of testing for disease associationylinkage that
combines the information from marker loci clustering around a
local peak and assesses its genome-wide significance by permu-
tation tests. The use of this method is illustrated on a real data
set in which our approach furnishes greatly enhanced signifi-
cance as compared with conventional analysis.

Scan Statistics and Permutation Tests
Consider a sequence of random variables, X1, . . . XN. For 1 #
L # N, let YL(t) 5 ¥i5t

t1L21 Xi be a moving sum of L consecutive
observations. The linear (unconditional) scan statistic then is
defined as

SL 5 max$YL~1!, YL~2!, . . . , YL~N 2 L 1 1!%, [1]

that is, as the largest moving sum of length L (8). Scan statistics
have been used in epidemiology, molecular biology, and many

other areas of science and engineering to detect clustering, for
example, in DNA sequence analysis (9).

Here, Xi is an observation or a statistic based on the genotypes
at the ith marker, and the sum YL(t) refers to the combined
information of ordered markers, moving along the chromo-
somes. For example, Xi might be the number of alleles shared
identically by descent (IBD) by an affected sib pair at the ith
marker locus in a genome screen. Alternatively, there is prece-
dent for using log likelihood ratios as ‘‘observations’’—
correlations between lod scores (10) or allele sharing propor-
tions (11) at specific loci have been interpreted as evidence for
genetic interaction between these loci. It is clear that a scan
statistic based on lod scores captures the particular feature of
true peaks being wider than false peaks (see the Introduction).
Therefore, scan statistics are expected to be more powerful for
detection of susceptibility loci than is a statistic focused only on
a single marker locus.

The major developments of this paper are the simultaneous
investigation of several scan statistics with different numbers of
clustered loci and the choice of the smallest associated signifi-
cance level as our test statistic. The corresponding test is
mathematically intractable but can be achieved by computer-
based methods, bootstrap, or permutation, which have been
proven effective (12). Below, we employ Monte Carlo permu-
tation tests to search for clusters of consecutive markers that
point to a gene underlying the trait studied.

Global Significance Levels
We focus on data in which the phenotype is dichotomous, for
example, observations on cases and controls, or affected-
affected (AA) versus affected-unaffected (AU) sib pairs. Con-
sider a scan statistic of fixed length L, for example, L 5 5. Under
the null hypothesis of no disease association or linkage, any set
of marker genotypes in an individual is equally likely to occur
with a binary outcome. This finding implies that data matrices
with any permutation of the n binary outcomes have equal
probabilities of occurrence. We make use of this fact to numer-
ically calculate the significance level associated with an observed
scan statistic, SL. For each permutation sample, we compute the
scan statistic (irrespective of where in the sequence of observa-
tions it occurs); the proportion, PL, of permutation samples with
a scan statistic at least as large as SL represents the significance
level associated with SL.

The PL value so computed represents the global significance
level, as opposed to a locus-specific significance level (13), for a
given value of L. However, there may be no a priori reason for
choosing any particular value for L. Rather, one would like to try
any one of the values from 1 through, say, Lmax 5 10 and focus
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on the smallest PL value obtained. This minimum PL value, Pmin,
then represents the statistic whose significance level is to be
determined. It is obtained from the permutation samples as
follows. We view the statistics, S1, S2, . . . SLmax, as multiple
(correlated) measurements. In each permutation sample, a
minimum significance level, Pmin*, is obtained in analogy to the
one observed in the real data. Then, the overall significance
level, Pglobal, associated with Pmin is given by the proportion of
permutation samples with Pmin* , Pmin (14).

Application to Autism Genome Screen
In a genome screen for autism, independent sib pairs were
genotyped for a total of 324 microsatellites (J. J. Liu, unpub-
lished observations). With a broad disease definition, 86 AA and
91 AU sib pairs were available. At each marker locus, the
ALLEGRO program (4) determined the lod score associated with
the allele sharing proportion in each sib pair. The statistic used
for the ith marker was the difference, Xi 5 uAA 2 uAU, where uAA
and uAU are total lod scores in AA and AU sib pairs, respectively.
Scan statistics of lengths 1 through 10 were tried. In 100,000
permutations, P values were obtained as shown in Table 1.

For marker number 159, the total lod score observed in AA
pairs was 1.21 and the score for AU pairs was 22.29. Neither lod
score is remarkable. The difference in lod scores, 3.50, is the
largest such difference observed in the data and, in our Monte
Carlo permutation test, is associated with a genome-wide sig-
nificance level of 0.131. This finding does not indicate significant
presence of a disease susceptibility gene anywhere in the ge-
nome. With an associated significance level of Pmin 5 0.015, the
most significant scan statistic is that of length 6. Because we are
searching for the scan statistic with the smallest P value, we have
to compute the genome-wide significance level associated with
Pmin. The result, Pglobal 5 0.038, still is statistically significant (at
the 5% level). For a dense map of markers in an allele sharing
study, a genome-wide significance level of Pglobal 5 0.05 corre-
sponds to a locus-specific significance level of P 5 0.000022 or
a lod score of 3.6 (13). Similarly, Pglobal 5 0.038 translates into
P 5 0.0000163 or a lod score of 3.8.

Discussion
The example data shown above strikingly demonstrate the
usefulness of our approach. For the same data, it reduces the
significance level from 0.131 to 0.038. In our experience, this is
not an isolated result. Other data that is not shown here
furnished similar improvements. We expect that our method will
become particularly useful, for example, when thousands of
dense single nucleotide polymorphism markers are tested for
association with a disease. Our result of a genome-wide signif-
icance level of P 5 0.038 for the autism data is remarkable—for

complex traits, it has been difficult to find global significance
levels smaller than 0.05 (15).

Trying out a large number of scan statistics of different lengths
will result in an increased global significance level. As shown in
Table 1, for lengths of the scan statistic from 1 through 10, the
associated overall significance level is P 5 0.047. We recommend
one of the following three possibilities to make this approach as
efficient as possible: (i) testing only one length, (ii) testing all
lengths until the scan statistic starts decreasing, or (iii) testing all
lengths until the P value starts increasing.

(i) In linkage analysis, the genetic distance between marker
loci determines the correlation of the lod scores between them.
Very tightly linked markers are expected to furnish identical lod
scores. In the autism genome screen quoted above, the average
marker spacing was approximately 10 centimorgans (cM). Thus,
the scan statistics performing best in these data covered a region
of 50–60 cM. It may be useful for investigators to apply a scan
statistic of fixed length covering approximately 60 cM. The
resulting P value will then be global, without any need for
correction for multiple testing.

(ii) For increasing lengths, L, the associated scan statistics SL
tend to increase in size, at least initially. Eventually, SL ,
SL 2 1 will occur. In our data, a drop of the scan statistic occurs
in the step from length 9 to length 10. Presumably, a negative
value, SL 2 SL 2 1, indicates that L 2 1 should be taken as the
maximum length of the scan statistic. If we do this, the overall
significance level of P 5 0.047 for Lmax 5 10 drops to P 5 0.041
for Lmax 5 9. In other instances, the change in significance level
may be more pronounced.

(iii) An appealing choice for Lmax is an increase in length-
specific P value, which in the autism data occurs from step 6 to
7. For Lmax 5 6, the overall significance level turns out to be
P 5 0.038.

The largest difference in total lod scores between AA and
AU pairs is equal to 3.50 (marker 159). A maximum positive
lod score of this magnitude is generally associated with a
genome-wide significance level of approximately 0.05 (13).
Our result of a much higher significance level shows that the
difference in lod scores between AA and AU pairs may not be
interpreted in the same manner as a lod score observed in one
type of family data.

Statistics may have unequal properties for different variables
(genetic markers in our case). For example, if markers have
different numbers of alleles, and allele frequencies are compared
between cases and controls, a suitable statistic is the x2 for a 2 3
n table, with n being the number of alleles. Markers with
different numbers of alleles will yield statistics with different
numbers of degrees of freedom. It is then recommended, for
example, to convert these statistics to empirical significance
levels, P, and use log[2log(P)] as the statistics of interest, which
now are all on an equal scale.

Once the scan statistic has identified an interesting genomic
region on a chromosome, the procedure may be applied on a
chromosome-by-chromosome basis. This approach may find
additional, weaker susceptibility loci.

lod scores derived from a multilocus linkage analysis refer to
the strength of linkage to a particular location on a genetic map,
where a local maximum of the lod-score curve identifies the
estimated position of a susceptibility locus. The scan statistics
developed here provide additional support for linkage above and
beyond what is conveyed by the maximum lod score. They are
powerful when a susceptibility locus exerts an effect over mul-
tiple marker loci, which is generally the case for genetic linkage
in today’s genome screens. It also is expected to be true for
disequilibrium mapping in special populations, where disequi-
librium extends over multiple loci. In large outbred populations,
disequilibrium is not expected to extend over more than 1y3 cM
(16) so that marker loci must be very densely spaced for scan

Table 1. Scan statistics of varying lengths L for autism genome
screen resulting in a statistic of Pmin 5 0.015

L Var. no. SL P value

1 159 3.50 0.131
2 159 6.91 0.050
3 158 9.69 0.034
4 158 11.85 0.030
5 156 14.27 0.021
6 156 16.42 0.015
7 155 17.76 0.016
8 155 18.58 0.020
9 154 19.17 0.024

10 153 18.94 0.040

Var. no. indicates the first element of SL. Overall significance level is P 5
0.047 for Lmax 5 10 and P 5 0.038 for Lmax 5 6.
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statistics to show their full potential. Thus, depending on the
population investigated andyor the type of analysis carried out,
scan statistics may have useful lengths extending over rather
large (linkage) or only short (association) genomic regions.

The increased power provided by scan statistics has the effect
that smaller numbers of observations (or families) may yield as
strong a result as do conventional statistics based on larger
numbers of observations. Conversely, with a given number of
observations, conventional methods will detect susceptibility loci
of some minimum effect (‘‘signal strength’’) but scan statistics

will detect loci of smaller effects. However, scan statistics as
proposed in this paper are not useful for narrowing a candidate
region once linkage has been established.

Computer programs carrying out the calculations described in
this paper are available from the authors.
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